
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/365744506

Robust Binary Component Decompositions

Preprint · November 2022

CITATIONS

0

2 authors:

Some of the authors of this publication are also working on these related projects:

Log-determinant constrained Non-negative Matrix Factorization View project

Deep MF View project

Christos Kolomvakis

Université de Mons

5 PUBLICATIONS   1 CITATION   

SEE PROFILE

Nicolas Gillis

Université de Mons

170 PUBLICATIONS   3,284 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Christos Kolomvakis on 25 November 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/365744506_Robust_Binary_Component_Decompositions?enrichId=rgreq-6c1eb953522e82e501a40f7ddbc9472b-XXX&enrichSource=Y292ZXJQYWdlOzM2NTc0NDUwNjtBUzoxMTQzMTI4MTEwMDcxNzAzM0AxNjY5MzkxNzk5MTA1&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/365744506_Robust_Binary_Component_Decompositions?enrichId=rgreq-6c1eb953522e82e501a40f7ddbc9472b-XXX&enrichSource=Y292ZXJQYWdlOzM2NTc0NDUwNjtBUzoxMTQzMTI4MTEwMDcxNzAzM0AxNjY5MzkxNzk5MTA1&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Log-determinant-constrained-Non-negative-Matrix-Factorization?enrichId=rgreq-6c1eb953522e82e501a40f7ddbc9472b-XXX&enrichSource=Y292ZXJQYWdlOzM2NTc0NDUwNjtBUzoxMTQzMTI4MTEwMDcxNzAzM0AxNjY5MzkxNzk5MTA1&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Deep-MF?enrichId=rgreq-6c1eb953522e82e501a40f7ddbc9472b-XXX&enrichSource=Y292ZXJQYWdlOzM2NTc0NDUwNjtBUzoxMTQzMTI4MTEwMDcxNzAzM0AxNjY5MzkxNzk5MTA1&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-6c1eb953522e82e501a40f7ddbc9472b-XXX&enrichSource=Y292ZXJQYWdlOzM2NTc0NDUwNjtBUzoxMTQzMTI4MTEwMDcxNzAzM0AxNjY5MzkxNzk5MTA1&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christos-Kolomvakis?enrichId=rgreq-6c1eb953522e82e501a40f7ddbc9472b-XXX&enrichSource=Y292ZXJQYWdlOzM2NTc0NDUwNjtBUzoxMTQzMTI4MTEwMDcxNzAzM0AxNjY5MzkxNzk5MTA1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christos-Kolomvakis?enrichId=rgreq-6c1eb953522e82e501a40f7ddbc9472b-XXX&enrichSource=Y292ZXJQYWdlOzM2NTc0NDUwNjtBUzoxMTQzMTI4MTEwMDcxNzAzM0AxNjY5MzkxNzk5MTA1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite-de-Mons?enrichId=rgreq-6c1eb953522e82e501a40f7ddbc9472b-XXX&enrichSource=Y292ZXJQYWdlOzM2NTc0NDUwNjtBUzoxMTQzMTI4MTEwMDcxNzAzM0AxNjY5MzkxNzk5MTA1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christos-Kolomvakis?enrichId=rgreq-6c1eb953522e82e501a40f7ddbc9472b-XXX&enrichSource=Y292ZXJQYWdlOzM2NTc0NDUwNjtBUzoxMTQzMTI4MTEwMDcxNzAzM0AxNjY5MzkxNzk5MTA1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nicolas-Gillis?enrichId=rgreq-6c1eb953522e82e501a40f7ddbc9472b-XXX&enrichSource=Y292ZXJQYWdlOzM2NTc0NDUwNjtBUzoxMTQzMTI4MTEwMDcxNzAzM0AxNjY5MzkxNzk5MTA1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nicolas-Gillis?enrichId=rgreq-6c1eb953522e82e501a40f7ddbc9472b-XXX&enrichSource=Y292ZXJQYWdlOzM2NTc0NDUwNjtBUzoxMTQzMTI4MTEwMDcxNzAzM0AxNjY5MzkxNzk5MTA1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite-de-Mons?enrichId=rgreq-6c1eb953522e82e501a40f7ddbc9472b-XXX&enrichSource=Y292ZXJQYWdlOzM2NTc0NDUwNjtBUzoxMTQzMTI4MTEwMDcxNzAzM0AxNjY5MzkxNzk5MTA1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nicolas-Gillis?enrichId=rgreq-6c1eb953522e82e501a40f7ddbc9472b-XXX&enrichSource=Y292ZXJQYWdlOzM2NTc0NDUwNjtBUzoxMTQzMTI4MTEwMDcxNzAzM0AxNjY5MzkxNzk5MTA1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christos-Kolomvakis?enrichId=rgreq-6c1eb953522e82e501a40f7ddbc9472b-XXX&enrichSource=Y292ZXJQYWdlOzM2NTc0NDUwNjtBUzoxMTQzMTI4MTEwMDcxNzAzM0AxNjY5MzkxNzk5MTA1&el=1_x_10&_esc=publicationCoverPdf


ROBUST BINARY COMPONENT DECOMPOSITIONS

Christos Kolomvakis Nicolas Gillis

Department of Mathematics and Operational Research, Faculty of Engineering,
University of Mons, Rue de Houdain 9, 7000 Mons, Belgium

ABSTRACT

Semi-binary matrix factorization (semi-BMF) is a matrix de-
composition model where the elements of one factor are bi-
nary. Semi-BMF can be interpreted as a generalization of k-
means, and can be employed in clustering problems such as
community detection. In the absence of noise, Kueng and
Tropp (SIAM J. Math. Data Sc., 2021) have recently pro-
posed a provably correct algorithm for semi-BMF that require
to solve semidefinite programs (SDPs). In this paper, we ex-
tend their approach in the presence of noise. Moreover, since
standard solvers for SDP rely on interior-point methods and
do not scale well, we also propose a first-order method to re-
duce the computational costs. We test our new algorithms on
synthetic data, and show that they compare favorably with the
state of the art.

Index Terms— semi-binary matrix factorization, sign
component decomposition, asymmetric binary component
decomposition, semidefinite programming, Schur indepen-
dence

1. INTRODUCTION

Matrix factorization models have been employed for a wide
variety of machine learning tasks. One of the reasons of using
such a model is dimensionality reduction [1]. Principal com-
ponent analysis (PCA), linear discriminant analysis, and the
singular value decomposition are famous examples of such
models. Nonnegative matrix factorization (NMF) is a model
that constraints the factors to be nonnegative. While these
constraints render the problem NP-hard [2] (in contrast to the
unconstrained case, like PCA), it is used for a variety of ap-
plications: hyperspectral unmixing, document classification,
and community detection, to name a few; see, e.g., [3] [4] [5].
A main advantage of NMF over unconstrained models is the
interpretability of the retrieved factors. In binary matrix fac-
torization (BMF), the factors are constrained to have elements
in {0, 1}. Due to the combinatorial nature of this problem, it
is also hard to solve [6] [7]. We may also constrain just one
of the factors to have binary elements. This model is known
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as semi-BMF and it has been applied in community detection
and on the analysis of DNA data [8] [9]. In [10] and [11],
the authors describe exact algorithms than can compute semi-
BMF, when the binary factor has elements in either {0, 1}
or {±1}, as long as the input matrix satisfies certain prop-
erties. The drawbacks of their algorithms, however, is that
they can only be applied in the noiseless case, rendering them
useless in practice. In addition, these algorithms require solv-
ing semidefinite programs (SDPs), for which standard solvers
rely on interior-point methods [12], and hence are not scal-
able. Our goal in this paper is two fold:
1. Extend the models and algorithms proposed in [10, 11] to
handle noisy input matrices.
2. Design algorithms that are less demanding in terms of
memory and computations needs.

The paper is organized as follows. In Section 2, we recall
the models and algorithms from Kueng and Tropp [10, 11].
In Section 3, we show how their model can be adapted in
the presence of noise. In Section 4, we propose a first-order
method to solve the SDPs that need to be solved in the new
noisy model. In Section 5, we provide some preliminary ex-
perimental results, comparing with several state-of-the-art al-
gorithms.

2. MODELS AND ALGORITHMS OF KUENG AND
TROPP

In [10], Kueng and Tropp first consider the following matrix
decomposition model.

Definition 1 (SSCD). The matrix A ∈ Rn×n is a correlation
matrix and admits a rank-r SSCD if it can be decomposed as
follows

A =

r∑
i=1

τisis
T
i , (1)

where τ ∈ ∆r
+ = {τ | τi > 0 for all i,

∑r
i=1 τi = 1}, and the

sign components si ∈ {±1}n for all i.

Without any additional properties regarding either si or
τi, computing the SSCD is intractable. However, if the sign
components satisfy the following property, the computation
of the SSCD can be performed in polynomial time [10].



Definition 2 (Schur independence, sign vectors). A collection
of sign vectors, {s1, , . . . , sr} ⊂ {±1}n, is Schur indepen-
dent if the set {e} ∪ {si ⊛ sj : 1 ≤ i < j ≤ r} ⊂ Rn is
linearly independent, where e is the vector of all ones, and ⊛
is the Hadamard (elementwise) product.

Under Schur independence, [10] proposed an algorithm
to compute an SSCD of a given correlation matrix A as in
(1) using SDPs; see Algorithm 1. The rationale behind their
algorithm is the geometric properties of the elliptope,

En = {X ∈ Hn : diag(X) = e and X ⪰ 0},

where Hn is the set of real symmetric n × n matrices. The
elliptope contains all n×n correlation matrices. In fact, given
an orthogonal basis column space of A, U = orth(A), the
set {X ∈ En | tr(U⊤XU) = n} is a polyhedral face of
En [13]. Hence maximizing a linear functional over this set
will provide a vertex of that face, which will be a rank-one
sign matrix sis

⊤
i which are the only vertices of the elliptope,

En. Once a component is identified, it can be deflated from
A, and the same trick can be applied iteratively.

Algorithm 1 Noiseless SSCD [10]
Input: A =

∑r
i=1 τisis

⊤
i ∈ En, τ ∈ ∆r and si ∈ {±1}n.

Output: Recover τ and {si}ri=1, up to permutation.

1: k = 1.
2: while A ̸= 0 do
3: Let U = orth(A) ∈ Rn×r.
4: Generate g ∈ Rn randomly and solve

max
X∈En

g⊤Xg such that tr(U⊤XU) = n, (2)

to obtain X⋆ = sks
⊤
k for sk ∈ {±1}n.

5: Calculate ζ from

max
ζ∈R

ζ such that ζA+ (1− ζ)X∗ ⪰ 0.

6: Update A← ζ∗A+ (1− ζ∗)X∗ ⪰ 0 and k ← k+ 1.
7: end while
8: Compute τ = argminy∈∆r ||A−

∑r
i=1 yisis

⊤
i ∥2.

In [11], authors show that SSCD can be used to compute
the following matrix factorization.

Definition 3 (Asymmetric BCD, ABCD). The matrix C ∈
Rn×m admits an ABCD if

C = ZWT , (3)

where Z ∈ {0, 1}n×r and W ∈ Rm×r.

Remark 1. ABCD described in [11] is the same as semi-
BMF. For the remainder of the paper, when referring to
ABCD, we are referring to the model and algorithm described
in [11].

If Z is Schur independent and W is full rank, then (3)
can be computed in polynomial time. However, the definition
of Schur independence for a set of binary vectors is different
from Definition 2.

Definition 4 (Schur independence, binary vectors). A set of
binary vectors, {z1, . . . , zr} ⊆ {0, 1}n, is Schur independent
if the set {e} ∪ {zi : 1 ≤ i ≤ r} ∪ {zi ⊛ zj : 1 ≤ i < j ≤
r} ⊂ Rn is linearly independent.

Due to space limitations, we do not provide the details
on how ABCD is solved via SSCD, and refer the interested
reader to [11].

3. ROBUST ABCD

In order to solve ABCD in the presence of noise relying on
the approach of Kueng and Tropp, we need to adapt SSCD in
the presence of noise.

Let us consider Ã = A + N, where A ∈ Hn admits
an SSCD with Schur independent sign components, and N ∈
Rn×n is additive noise. Let us see how we can adapt the
different steps of Algorithm 1:
Step 3. The basis for the column space of A, U ∈ Rn×r,
is unknown but can be replaced by the first r left singular
vectors of Ã, denoted Ũ ∈ Rn×r. If the noise is sufficiently
small, the column spaces of U and Ũ will be close to one
another [14].
Step 4. First, it can be proven that tr(U⊤XU) ≤ n holds for
all X ∈ En, and hence the constraint tr(U⊤XU) = n can
be replaced with tr(U⊤XU) ≥ n. Second, the SDP (2) is
infeasible in general when U is replaced by Ũ, because the
hyperplane {X | tr(Ũ⊤XŨ) = n} intersects En only when
the basis Ũ coincide with the column space of a matrix within
En. This will happen with probability zero when r < n and
N is randomly generated. We therefore compute an optimal
solution, X∗, of

max
X∈En

g⊤Xg such that tr(Ũ⊤XŨ) ≥ n(1− ϵ), (4)

where ϵ is a hyperparameter. We can prove by duality that the
trace constraint is active, and hence replace it with equality
for simplicity.
Steps 5-6. Steps 5-6 of Algorithm 1 perform a deflation. This
is useful when A belongs to a simplicial face of the ellip-
tope En. This is however not the case for Ã, and this defla-
tion step cannot produce a meaningful result: in fact, because
of the noise and low-rankness of A, Ã is typically not pos-
itive semidefinite and does not belong to the elliptope. This
is interesting to notice, and we actually preprocess the input
matrix, Ã, by projecting it onto the elliptope. We observe
that this preprocessing improves the performance of our al-
gorithm. Moreover, in the noisy case, (4) will not produce a
rank-one sign matrix. Hence after computing X∗, we let u1

be the first left singular vector of X, and set s1 = sign(u1).



Once s1 is identified, how can we extract more components?
Of course, we could generate another g randomly, hoping
to obtain another rank-one sign matrix. However, there is
no guarantee that this will work, and could require many at-
tempts to find all sign components. To alleviate this, we use
an orthogonalization procedure for the random g that we gen-
erate: the next g is orthogonal to the computed sk’s so that
sks

⊤
k cannot maximize the (nonnegative) objective, g⊤Xg ≥

0, since g⊤sks
⊤
k g = 0. Note that this idea could also be used

in Algorithm 1 to replace its deflation step which is compu-
tationally (slightly) more demanding than simply generating
g’s orthogonal to the previously extracted sk’s. Still, in prac-
tice, because of the noise, the computed rank-one factor sks⊤k
at step k might not be satisfactory. This can be verified by
checking that tr(Ũ⊤sks

T
k Ũ) is large enough, otherwise we

start again by generating another g.
Algorithm 2 summarizes our noisy variant of Algorithm 1.

Algorithm 2 Noisy SSCD

Input: A matrix Ã =
∑r

i=1 τisis
⊤
i +N, where τ ∈ ∆r and

si ∈ {±1}n, ϵ > 0.
Output: Recover τ and {si}ri=1, up to permutation, given

that ∥N∥2 is sufficiently small.

1: P = In.
2: Project Ã to En.
3: for k = 1 : r do
4: Let Ũ contain the first r left singular vectors of Ã.
5: repeat
6: Generate g ∈ Rn randomly, set g← Pg, and solve

max
X∈En

g⊤Xg s.t. tr(Ũ⊤XŨ) = n(1− ϵ),

to obtain X⋆.
7: Compute u1, the first left singular vector of X⋆, and

set sk = sign(u1).
8: until a suitable sign vector sk is computed
9: P = (In − (Ps̃k)(Ps̃k)

T

(∥Ps̃k)∥2
2

)P

10: end for
11: Compute τ = argminy∈∆r ||A−

∑r
i=1 yisis

⊤
i ∥2.

Why does Algorithm 2 work? Let us provide a recovery
guarantee for Algorithm 2. Although this result is relatively
weak, we will quantify the noise level allowed, δ, and how to
choose ϵ, in an extended version of this work.

Theorem 1. Let A =
∑r

i=1 τisis
T
i ∈ Rn×n, N ∈ Rn×n be

the noise such that ∥N∥2 ≤ δ, and Ã = A +N. For δ suf-
ficiently small, there exists some ϵ ≥ 0 such that Algorithm 2
recovers {si}ri=1 exactly, with probability one.

Sketch of the proof. First, let us denote Ũ(δ) the column
space of the first r singular vectors of Ã. This subspace
changes smoothly with δ, and coincide with that of U

for δ = 0 [14]. In the noiseless SDP (2), we can prove
that if the si’s generating A are Schur independent, then
tr(U⊤ss⊤U) ≤ n − 1 for any s ∈ {±1}n with s ̸= si for
all i. The function f(X) = tr(Ũ(δ)⊤XŨ(δ)) changes con-
tinuously with δ, while we know f(X) ≤ n for any X ∈ En.
Therefore, for a well chosen ϵ, given that δ is sufficiently
small, the only rank-one sign matrices feasible for (4) will be
the rank-one components of A.

Recall that, with probability one, the optimal solution
of (4) is unique (it identifies a vertex of the face of En that
contains A in its interior). We have that (4) changes smoothly
with δ and ϵ [15], and coincide with (2) when δ = ϵ = 0.
Hence for δ sufficiently small, there exists ϵ such that an
optimal solution of (4), X⋆, will be close to that of (4) (which
is a rank-one sign vector of A). After the post-processing of
X⋆ (step 7 of Algorithm 2), we will recover a ground truth
factor si.

The full proof will be given in an extended version of this
paper. Of course, in practice, the noise level, δ, might not be
small enough. However, as we will see, Algorithm 2 is able
to recover accurately the sign vectors that generated A even
for relatively large noise levels.

4. FIRST-ORDER METHOD FOR SSCD

One way to solve (4) with high accuracy is through an inte-
rior point method [12]. For an n×n input correlation matrix,
this requires O(n6) operations per iteration, which makes it
impractical for large data sets. To reduce the computational
cost, we propose a first-order method to solve (4); see Algo-
rithm 3. Note, and this is crucial, that we do not need a high
accuracy solution of (4), since we are going to postprocess the
solution to obtain a rank-one sign matrix.

For the projection step onto the feasible set, En ∩ Tϵ,
where Tϵ = {X | tr(Ũ⊤XŨ) = n(1− ϵ)}, we use an alter-
nating projection strategy. We choose to first project onto the
set of correlation matrices, and then onto the set Tϵ. A method
for the projection onto the elliptope, inspired by Dykstra’s al-
gorithm [16], is described in [17]. The projection onto Tϵ is
simple, and given by PTϵ

(Y) = Y− tr(UUTY)−n(1−ϵ)
r UUT .

We perform 10 iterations of this alternating strategy.
The cost function f(X) = gTXg is a linear function of

X and its gradient is ∇f(X) = ggT . In our implementation,
we use a naive step-size, namely 1/∥g∥22, which appears to
perform well in practice. We will design a more sophisticated
first-order method in an extended version of this work (in par-
ticular, using the Frank-Wolfe algorithm would make sense).
Surprisingly, we observe that performing only 5 iterations of
the projected gradient is enough to obtain competitive results
on synthetic data sets.

5. NUMERICAL EXPERIMENTS

As far as we know, there do not exist heuristic algorithms
for SSCD itself, only the algorithm of [10] in the noise-



Algorithm 3 Projected gradient method for SSCD (4)
Input: Initial matrix X ∈ Rn×n, matrix U ∈ Rn×r, a vector

g ∈ Rn, a scalar ϵ > 0.
Output: Solves (4), approximately.

1: k = 1, Xk = X, L = σ1(gg
T ) = ∥g∥22

2: while terminating condition is false do
3: Xk+1 = Xk − 1

L (−gg
T )

4: while the alternating projection has not converged do
5: Project Xk+1 to En according to [17].
6: Set Xk+1 ← Xk+1 − tr(UUTY)−n(1−ϵ)

r UUT

7: end while
8: k ← k + 1.
9: end while
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Fig. 1. Mean Hamming Distance over 20 trials.

less case. Hence, as far as we know, Algorithm 2 is the
first to handle the noisy SSCD problem. On the contrary,
Semi-BMF is rather popular, and several heuristics have been
introduced recently. We will compare our approach to a
tensor-based approach [18] and the matrix decomposition-
based approaches in [9]. All experiments in this section are
run on MATLAB R2018a on a laptop with AMD Ryzen 7
5800H @ 3.2 GHz and 16GB RAM. The code is available
at https://gitlab.com/ckolomvakis/robust-binary-component-
decompositions. For our first experiment, we consider r = 4,
n = 45, m = 65. The input matrix C ∈ Rn×m is gen-
erated via a binary factor Z ∈ {0, 1}n×r, whose elements
have a probability of 1/2 to be either 0 or 1, and a random
matrix W ∈ Rr×m with standard normal elements. Ran-
dom Gaussian noise N ∈ Rn×m is then added, as well as

an additional term 1/15(cdT ), where c ∈ Rn and d ∈ Rm

are uniformly distributed in [0, 1]. We define the SNR as
SNR = 10 log10

(
∥ZW∥2F /σ2

N∥N∥2F
)
, with σ2

N varying
according to the SNR value considered. The number of
Monte Carlo trials for each SNR value is set to 20. For
ABCD, we solve the SDPs through cvx [19] (denoted as
’ABCD algorithm using IPM’), and through our first-order
approach (denoted as ’ABCD algorithm using PG’). We set
ϵ = 0.05. The approaches presented in [9] are a coupled
matrix factorization method (denoted as ’CMF alg.’) and
an ALS method for Semi-BMF (denoted as ’ALS’). The
tensor-based approach from [18] is denoted as ’Algebraic’.
The Hamming distance is calculated as follows: We con-
vert the binary factor retrieved into a factor in {±1}n×r.
Then, we compare all columns according to the metric
d(si, sj) = ∥(e − si ⊛ sj)∥22/4, where i, j ∈ {1, . . . , r}
and i ̸= j. If d(si, sj) > n − d(si, sj), then we set
d(si, sj) = n−d(si, sj). Figure 1 displays the result. We ob-
serve that for all SNR values considered, the best performance
is achieved by the ’Algebraic’ method. For SNR > 10, our
approach becomes competitive and performs better than most
of the other methods considered.
Scalability Let us compare the execution time for the two
methodologies presented to tackle ABCD. In this experiment,
C is generated via a binary factor Z, whose elements are
drawn from a uniform distribution in [0, 1] and then rounded
to the nearest integer, while W has elements generated from
a standard normal distribution. Standard normal noise N is
added and the SNR for this experiment is at 13 dB. We set
ϵ = 0.05 for both methods. The number of trials for each
instance considered is 20. The results are presented in the
table below, where the mean execution time for each method
is presented in seconds.

(n,m, r) tIPM tPG

(90, 90, 6) 247.2 82.0
(140, 120, 5) 1623.3 188.7
(200, 200, 5) NaN 521.9
(260, 290, 4) NaN 915.7

We see that cvx could not solve the last two cases. In one of
the trials for (n,m, r) = (140, 120, 5), the first-order method
had found one element of the binary factor wrong. In the rest
of the trials, all methods retrieved the binary factor exactly.

6. CONCLUSION

In this work, we extended the algorithms for SSCD and
ABCD proposed in [10, 11] to handle noisy data. Further-
more, we proposed a first-order method to handle larger
problems. This will pave the way to apply our ABCD algo-
rithm to real data in future works. Future work also includes
developing further our robustness analysis of the SDP-based
model, and our first-order method.

https://gitlab.com/ckolomvakis/robust-binary-component-decompositions
https://gitlab.com/ckolomvakis/robust-binary-component-decompositions
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